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Abstract The problem of growing computational complexity in the finance industry
demands manageable, high-speed and real-time solutions in solving complex math-
ematical problems such as option pricing. In current option trading scenarios, de-
termining a fair price for options “any time” and “anywhere” has become vital yet
difficult computational problem. In this study, we have designed, implemented, and
deployed an architecture for pricing options on-line using a hand-held device that is
J2ME-based Mobile computing-enabled and is assisted by web mining tools. In our
architecture, the client is a MIDP user interface, and the back end servlet runs on a
standalone server bound to a known port address. In addition, the server uses table-
mining techniques to mine real-time data from reliable web sources upon the mobile
trader’s directive. The server performs all computations required for pricing options
since mobile devices have limited battery power, low bandwidth, and low memory.
We have parallelized and implemented various computational techniques such as bi-
nomial lattice and finite differencing. To the best of our knowledge, this is one of the
first studies that facilitate the mobile-enabled-trader to compute the price of an op-
tion in ubiquitous fashion. This architecture aims at providing the trader with various
computational techniques to avail (to provide results from approximate to accurate
results) while on-the-go and to make important and effective trading decisions using
the results that will ensure higher returns on investments in options.

Keywords Mobile/ubiquitous computing · Web table-mining · Finance
applications · Option pricing algorithms · MIDP · J2ME

K. Kola · R.K. Thulasiram (�) · P. Thulasiraman
Department of Computer Science, The University of Manitoba, Winnipeg, MB, Canada
e-mail: tulsi@cs.umanitoba.ca

K. Kola
e-mail: kirankkk@cs.umanitoba.ca

P. Thulasiraman
e-mail: thulasir@cs.umanitoba.ca

mailto:tulsi@cs.umanitoba.ca
mailto:kirankkk@cs.umanitoba.ca
mailto:thulasir@cs.umanitoba.ca


www.manaraa.com

A software architecture framework for on-line option pricing 147

1 Introduction

This paper is a study of the use of mobile technology combined with internet mining
for successful trading that would pave way for effective investment trading towards
better profitability through higher returns. In effect, this study combines e-commerce
and e-finance with the modern mobile technology to create M-commerce environ-
ment. Option pricing forms a fundamental objective and backbone of financial risk
management and decision-making solutions in option trading. Active trading takes
place either at the trading floor or through computers with instructions from investors
or investment managers. However, once an investor steps away from the workplace,
the investor encounters problems of interrupted trading, as the required information
is no longer available. In such cases, investors have to rely on the data provided by
some other sources (such as electronic board display). If the investor is away from
the building, he/she has to be in continuous touch with some other sources such as a
broker, to get some basic information about the market to analyze the market behav-
ior. However, the information provided by intermediary brokerage firms is generally
inadequate especially in the case of computing the option values.

Futures and Options are the most common type of derivatives and both are actively
traded on many exchanges. Our current research focuses only on the option pricing
and therefore, the discussion of futures and other securities is beyond the scope of
this paper.

In pricing options, every investor must understand the possible future trends of
an underlying asset and it is potential for speculation and hedging. In the derivative
market, accuracy and ability to respond ubiquitously to the fluctuating market is ex-
tremely important for every active investor. Therefore, to achieve ubiquitous nature
in option trading we need an infrastructure, which will enable the trader to avail vari-
ous computational techniques for accurate and immediate results. This can accelerate
decision-making process. Mobile technology is a new technology that rides a new
wave of business innovation. Use of mobile technology for e-business and decision-
making strategy is slowly changing the dialogue between investors and traders on the
floor of a stock exchange into M-business deals.

In this study, we focus on three major issues to achieve ubiquity in derivative
markets: (i) mobile commerce aspects in derivative markets (particularly financial
options), (ii) various computational techniques used to price options, (iii) mining a
real-time finance data from web sources. We have incorporated all these issues to
provide a value-added, ubiquitous service to the trader on the go. We use the terms
ubiquitous, and pervasive interchangeably in this paper.

In our preliminary work [23], we have done a feasibility study of derivative pricing
using a short-range wireless connectivity with a PDA. Our goal in the current study is
to enable wireless trading strategies in ubiquitous fashion and ensure portability for
the trader. In the current work, we are experimenting and validating our architecture
on J2ME-based mobile emulators, which is applicable for limited and broad range
of wireless range networks. To make our architecture more effective, we use parallel
computing to do the computations at hand.

The rest of the paper is organized as follows: In the next section, we introduce
some vocabulary relevant to the current study with a motivation for Mobile-Pricing
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(M-pricing) in option trading. We have presented some background details on mobil-
ity in derivatives market and option pricing in Sects. 3 and 4, respectively. We then
describe our overall architecture design for real-time option pricing in Sects. 5 and 6.
We discuss a set of results in Sect. 7 and our conclusions in Sect. 8.

Our contribution through this work is the design and development of an architec-
ture that enables mobiquitous pricing using high performance parallel computing in
the emerging business scenario.

2 Vocabulary in option trading

An option [1] is a security that gives its owner the right without creating any oblig-
ation to trade-in a fixed number of shares of a specified asset (e.g., stocks) at a fixed
price (strike price) at any time on or before a specified future (maturity) date.

2.1 Fundamental ideas

There are two parties involved in the option trading namely holder and writer. The
holder of the option gets the right to buy (call) or sell (put) assets at a predetermined
time in the future for a predetermined value; the writer of the option is obliged to
deliver (call) or take delivery (put) of the underlying asset.

Two basic styles of options are European and American. While the former can be
exercised only at maturity, the latter can be exercised at any time prior to maturity.
Every option has a set of parameters that are required to compute the price of the
option. These are strike price, stock price, risk free interest rate, period of contract,
and volatility of the underlying asset. The strike price of a call (put) option is the
contractual price at which the underlying asset will be purchased (sold) in the event
that the option is exercised. The risk-free interest rate (r) is the rate at which an
investment (such as simple deposit) would grow without incurring any risk to the
capital. The time in years until the expiration of the option is called maturity date.
A measure of the change (either up or down movement) of the underlying security
over a given period is known as volatility (σ ).

In option markets, accuracy and ability to respond quickly to the fluctuating mar-
ket is vital for every active investor.

2.2 Motivation for ubiquitous pricing

The use of mobile technology extends the nature and scope of the e-commerce pro-
viding additional advantages by enabling continuous communication and information
access regardless of locale, thus resulting in continuous touch with the market. Ubiq-
uity in the market place is concerned with the use, applications, and integration of
diverse services. Many researchers attempted to address innovative research issues
and possible solutions in mobile commerce. Research efforts by Varshney and Vet-
ter [2] emphasize that mobile financial application is one of the important component
of M-commerce, which can replace banks, ATMs, and manual methods by wireless
aided services such as on-line brokerage, and micro payments, etc. Readers can find
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several interesting issues and research problems that are related to mobile commerce
in [3–6]. The current research is motivated by the concept of providing value-added
services in option trading to trader-on-the-move and is driven by the following prin-
ciples [7, 8].

Operational focus Traders have access to handheld devices (mobile device or any
wireless device) all the time. Therefore, as a value-added service, a trader should be
able to compute the option price irrespective of his/her physical location. This type
of trading is called Martini trading (trading any time and anywhere). A recent report
on Mobile Commerce (M-Commerce) by Durlacher Research states “The ability to
receive information and perform transactions from virtually any location is especially
important to time-critical applications, such as stock and options trading as well as
betting. Providing mobile traders with a similar level of access and information to
that available in the fixed line environment is the key.”

Personalization Wireless devices like mobile devices are typically operated by and
configured for a single trader. Thus, the trader can receive personalized information
on his/her investments as and when new information (for example, new price, new
contract, etc.) becomes available.

Multi-channel trading Customer prefers a choice in the channel through which they
do business. When a trader cannot associate himself with the main trading terminal
as in cases such as (i) having power failure (ii) being away from the trading floor and
(iii) experiencing a nonfunctional terminal, a mobile device can act as an alternative
trading terminal.

Handiness Mobile devices are compact, low-cost, and have improved security, thus,
making them popular for wireless trading.

3 Mobile computing developments related to trading

Mobile trading is a logical extension of e-business to address new customer chan-
nels and opportunities that deal with many services and applications in ubiquitous
fashion. Even though little is reported on the confluence of derivative trading with
wireless devices, researchers have recognized the need for such incorporation. In this
section, after listing possible benefits of ubiquity in trading, we classify the use of
the ubiquity into three broad aspects (i) commodity trading (ii) risk management
and (iii) services and software. The frequent fluctuations in prices or the increasing
volume of transactions are often overwhelming due to dependence on time-critical
information of breaking news on a company’s earnings, losses, or a change in their
structure. In order to make conscious decisions in an uncertain market place, every
investor needs time-critical information in a ubiquitous fashion [7].

Kargupta et al. [9] justify the needs and benefits of reporting time-critical informa-
tion of stock data through wireless networks. These authors have introduced a mobile
data mining system that facilitates intelligent monitoring of time critical financial
data from a hand held device such as PDA (Personal Digital Assistant) and mobile.
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Ajenstat [10] proposed a new idea for automation of on-line derivative (stock op-
tions) trading in any place and at any time without the presence of a decision maker.
More specifically, a virtual decision maker is a network of cooperating intelligent
agents. These agents focus on some rule-based environment and expert-validated
knowledge to analyze the behavior of the stock market. Furthermore, the author em-
phasizes that the integration of wireless commerce (option of accessibility) with web-
based virtual decision-making systems will play a vital role in the future.

For our research, we integrate time-critical information pervasively. That is, with
predefined threshold and boundaries on the price movements of the asset in ques-
tion, our architecture will initiate new computation in a pervasive fashion whenever
“real-time” price of the asset deviates from a predefined value or a predefined range.
The “real time” prices on an asset are monitored continuously through collection of
this information from on-line web sources with wireless devices. For instance, time-
critical information for option pricing such as “volatility,” and “prime rate” are mined
from reliable web sources (presently Yahoo! Finance and Money Cafe). In addition,
we have developed our architecture to choose one computational technique (at a time)
among various techniques that we have implemented on our back end server. These
techniques exploit the time-critical information in order to compute the price of an
option accurately for a particular underlying stock. In the following section, we de-
scribe some of the works related to the requirements of mobility in the derivative
market.

3.1 Round-the-clock trading

There are several factors behind the large dependence on wireless trading. Couples
of most compelling factors are: first, trading activity is becoming a 24-hour-a-day
business—especially for those who invest in commodities have to be following the
Asian and European markets, in sync with the North American market; there is higher
potential for a trader to miss market movements without wireless connectivity. In
other words, wireless devices make this possible, which enable the trader to track the
various market movements anytime or anywhere; second, Roche [11] states that, on
black Monday (1987), one option trader lost £55,000 in 5 minutes just for leaving the
market for such a short period. Research by Roche [11–13] focuses on the need for
wireless services in equities and derivative markets. The author emphasizes that sev-
eral market participants would prefer on-line trading while on the move, due to many
advantages: (1) Traders and brokers who are not bound to desktop trading such as
farmers or exporters; (2) General investors who want access to the market information
while on the go; (3) Traders and brokers who need assurance of an alternative-trading
terminal in case their main terminal gets disconnected.

Trading derivatives with hedging strategies has become one of the most impor-
tant recent developments in the financial market. Currently, investors price options
on-line from their desktop computers using various software tools [14–16]. However,
once an investor steps away from the work place, he/she is disconnected from the
market place. There have been some recent advancements to aid traders on the move,
SMS (Short Message Service) being one of them. “Push” and “pull” models are spe-
cific M-commerce services in wireless trading. In the push model, text messages are
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sent to a wireless device via SMS without any previous trader request. Examples of
push models include text messages sent to a mobile phone to alert clients regard-
ing financial news. The expansion of SMS-related services reflects higher volumes
of remote stock trading. Presently, a trader can subscribe to services such as Comm-
Sec [17] and Quo Trek [18] in order to be connected on the move. Technically, by
subscribing to equity-alert-services, one can receive personalized equity information
(real-time price information for personalized stock options) over a mobile phone. On
the other hand, in pull messaging, mobile client invokes server-side applications and
the resulting output is pulled from the web-server. However, information provided by
brokerage firms, via SMS, is insufficient (for only limited information on the asset
and period of contract is available through this message). Thus, the information from
brokerage firms cannot be used to compute the option price for a particular option
contract.

As a first step toward an organized use of mobility devices, Mobility Partner Advi-
sory Council recently announced [19] that “The Chicago Board of Trade (CBOT) is
deploying up to 10,000 wireless enabled pocket PC devices in the two years (2004–
2005) to floor traders to automate the trading process.”1

The research effort by Web [20] focuses on software solutions for hedge fund-
managers. According to Web, investors are becoming far more cautious and, in fact,
want to see the risk management and reporting system before they invest on any as-
set. Moreover, they are not ready to accept basic risk analysis offered by hedge fund
administrators. Roche [12] focuses on the risk management needs in the area of farm
production and financing. The author emphasizes that incorporating commodity risk
management into global on-line trading will significantly increase the use of com-
modity risk management tools worldwide. In addition, the integration of wireless
communication and the commodity market, through appropriate software and hard-
ware, will increase the agriculture derivative’s business with consequent benefits.

Wireless traders do not have the time or power to browse on-line information
from hand-held devices and calculate the risk level of a particular asset. However, a
trader seeks personalized information to be delivered in a ubiquitous fashion. Chang
and Cheng [21] emphasize a need of wireless solution for derivative trading and risk
management. An international task force on commodity risk management explored
new mobile assisted market-based approaches, in order to manage their vulnerability
to commodity price fluctuations. Furthermore, Chang and Cheng [21] stress that such
market-based risk management strategies increase the trading volumes of commodity
derivative.

Patsystems [19] has developed software called H-trader, which assists a trader to
do Martini Trading. H-trader operates on a mobile phone to trade derivatives across
the world. According to Patsystems, the integration of an H-trader with some risk
management tools will make more efficient trading environment. Thinkorswim [22],
a brokerage company in Chicago, enables the registered trader to perform trading
(stock options, and other securities) via web-based, PDA, or Mobile devices. Using

1CBOT provides wireless technology for commodity and option trading through Master Antenna System.
For secure trading, other devices such as Bluetooth enabled hand held devices are prohibited from the
trading floor.
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these services, the trader can follow real-time audio commentary in stock exchanges
and simultaneously has a feature of selling or buying commodities. Windale tech-
nologies [15] and FIS-Group [16] present innovative pricing software with various
option-pricing techniques that evaluate American and European style call and put
options. In addition, support for both desktop environment and Pocket PC versions is
available.

The ineffectiveness of these technologies is as follows: (a) The above-mentioned
enterprise versions are high-priced products; (b) Frequent changes in these products
require new updates to the software each time; (c) The computing technique(s) em-
ployed for option pricing and their working principles are not explained in their prod-
ucts to the end user; and (d) These products do not present the trader with real-time
prices and other parameters (prime interest rate, volatility). Unfortunately, parameters
(for example, volatility) used in the computational techniques are highly sensitive to
the market fluctuations.

In the current study, we have used various computational techniques such as bino-
mial lattice, finite differencing and fast Fourier transform, etc. For each technique, our
goal is to use real-time information that is mined from reliable web-sources such as
Yahoo! Finance. Our architecture uses the cost-effective implementation of a client
and server scheme (for instance, Apache Server, and MIDP-interface development
are open source environments) [29]. In addition, if there are any new updates in com-
putation techniques, we just need to upload the techniques to the back end server
rather than uploading them to the client. This way, the client saves the overhead cost
each time when there is a new update. Due to lack of space, we do not describe the
algorithm for web mining related to option pricing. We refer the reader to our ear-
lier work [23]. In what follows, the design and implementation explanation to make
mobile trading a possibility using the current technology, we propose architecture to
address this problem.

4 Computational techniques for option pricing

Many techniques, such as the binomial lattice method, the finite differencing method,
and the Monte Carlo method are being used for pricing options. We describe be-
low two computational techniques for pricing options: (i) a recent advance known
as finite-difference technique to solve financial models manifested as partial differ-
ential equations and (ii) a classical binomial lattice technique. We have parallelized
both the algorithms and details of the parallel algorithm are described for one of the
algorithms (binomial lattice). We have implemented other computational techniques
and for lack of space, we do not describe them here. More information on these and
other methods can be obtained from [24–27, 37]. We can use any of these techniques
as stand-alone modules for option pricing in our architecture described in Sect. 6 and
we can incorporate any of the latest pricing techniques in addition to these modules,
if necessary.

4.1 Finite differencing technique

Finite differencing technique is a fundamental numerical approach for pricing finan-
cial securities. There are several finite-difference schemes available such as, Mc-
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Cormack scheme, Richardson scheme [36]. Consider the Black–Scholes model [40],
a classical option-pricing model

∂u

∂t
+ σ 2S2

2

∂2u

∂S2
+ rS

∂u

∂S
− ru = 0 (1)

where u is the option price, t is time, σ is volatility, S is the asset price, and r is the in-
terest rate with initial and boundary conditions: u(0; t) = 0; and limS→∞u(S; t) = S,
u(S;T ) = max(S −E;0) for a call option and u(S;T ) = max(E −S;0) for a put op-
tion. We will only consider a call option here. The appropriate discretization for each
term in (1) is dictated by the individual terms of the PDE together with the required
precision and performance constraints. The accuracy of the results can be controlled
by the use of a finer grid in the computational time direction as well as the space
direction. That is, we iterate the solution process over many computational time steps
until we reach a steady state solution. For our research, we have implemented par-
allel FTCS finite-difference scheme to price options. This is a forward differencing
in time direction and central differencing in space direction (for further details on
finite-difference schemes, please refer to [33]).

We transform the B-S model into a form of a diffusion equation that makes it easier
to apply the FTCS finite-difference method to price options. Assuming S = Eex ,
t = T − τ/(σ 2/2) and u(S, t) = g(x, τ )v(x, τ ) where E is the strike price, g(x, τ ) =
Ee− 1

2 (k1−1)x− 1
4 (k1+1)2τ , in which k1 = 2r/σ 2 the Black–Scholes equation reduces

[35] to ∂v
∂τ

= ∂2v

∂x2 subject to initial and boundary conditions (for the European call
option)

v(x,0) = max
(
e− 1

2 (k1−1)x− 1
2 (k1+1)τ ,0

)

lim
x→−∞v(x, τ ) = e− 1

2 (k1−1)x− 1
4 (k1+1)2τ , lim

x→∞v(x, τ ) = 0

To discretize the above equation, a finite number of equally spaced time steps between
the current date (t = 0) and the maturity date of the option, (t = T ) are chosen. Simi-
larly, a finite number of equally spaced asset prices (Nj) are also chosen. �t = T/N ,
(N + 1) total time steps and, �S = Smax/2Nj , (2Nj + 1) total asset prices. By the
above discretization, a grid consisting of a total of (N + 1)(2Nj + 1) points is con-
structed as shown in Fig. 1. The grid point (i, j ) corresponds to time i�t and price
j�S. The third dimension is the computational time step (note that this time step is
different from physical time step, which marches from expiration to the current date)
which is used to ensure the stability of the results.

The solution scheme is iterated over many computational time steps until it
reaches a steady state. Steady state is defined as a scenario when the solution changes
very little between two consecutive computational time steps. Figure 1 shows an in-
stance during the computation of the option price. The computed values of the hor-
izontal layer (c − 1)th are used to calculate the values of layer c. The number of
computational layers depends on the relative error. To calculate the option values at
the cth layer at grid point (i, j ), we use the values from the (c − 1)th layer, which can
be expressed as

uc
i,j = ρuc−1

i+1,j−1 + (1 − 2ρ)uc−1
i+1 + ρuc−1

i+1,j+1
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Fig. 1 Option pricing
computational domain

Fig. 2 One-step lattice

Here, ρ = l/h2, where l denotes step size in time direction τ and h denotes step size
in price direction x. If τ is from 0 to T and x is from xmin to xmax, then N × l = T

and 2Nj × h = xmin − xmax. Therefore, note that the terminal condition t = T is
transformed to the initial condition τ = 0 [34]. The relative error is calculated as
given below and computation stops once the “err” falls below certain preset threshold
value: err = uc

i,j − uc−1
i,j .

4.2 Binomial lattice pricing algorithm

We describe here our pricing algorithms for options with single asset and extend them
for multidimensional derivatives. These algorithms are based on the classical bino-
mial lattice method due to Cox, Ross, and Rubinstein (CRR) [41]. This discretized
approach approximates the Black–Scholes mathematical model [40] of option pric-
ing to a large extent by representing the asset price movement in a lattice and is easy
to implement for experimentation.

In the one-step binomial lattice, the tree has a root node (A) from where stock
price (S) can go either up (B) or down (C) after some time T (Fig. 2). Numbers in the
brackets are the possible values for a call option.

This technique can be applied to the two-step and multi-step binary trees. Two step
nonrecombining tree has four leaf nodes (Fig. 3) meaning that there are four possible
stock prices after some time T . Constructing the lattice like this recursively approxi-
mates the continuous-time risk-neutralized process for asset prices (it is assumed that
asset prices follow a geometric process dS = αSdt + σSdBt , where α is a constant
and Bt is a standard Brownian motion).
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Fig. 3 Two-step
non-recombining lattice

The recursive algorithm proceeds in two phases. First, we construct a lattice. Sec-
ond, we work backward through the lattice from time T in order to compute the
present value of the option. (Convergence of the option price computed under the
binomial method to the true option price is discussed in [38].) To compute the bi-
nomial lattice, we first divide the time interval [0, T ] into L smaller intervals, each
of length �t = T/L (Fig. 3). Over each subinterval, the asset price is assumed to
move up from value S to Su, or down to Sd, with probabilities p and 1 − p, respec-
tively, as shown in Fig. 3. It can be shown that if we set u = eσ

√
�t , d = e−σ

√
�t , and

p = e
√

�t−d
u−d

(where σ is the volatility of the underlying asset) then over each time
interval, the mean and variance of asset price movements will match the mean and
variance of the continuous-time risk-neutralized asset price process. In the second
phase of the algorithm, we work backward from the leaf nodes at time T to compute
the option price. At the expiration time T and leaf–node i, we know that the value
of the option is given by F(Si, T ) = max[0,K − Si], K is the strike price. At time
T − 1 and node j , the value of the option is given by F(Sj , T − 1) = max[K − Sj ],
(pF(Sju,T ) + (1 − p)F(Sjd,T ))e−r�t ], the greater of the value under immediate
exercise of the option, K − Sj , or the expected value of holding the option for an-
other period, (pF(Sju,T ) + (1 − p)F(Sjd,T ))e−r�t ]. In the recursive algorithm,
communication is minimal due to evenly distributed data structure. The 1-step option
pricing formula can be applied to each of the steps in computing the option value
and has been extended to a multistep lattice using the above formulae. In the case
of recombining tree (where the up and down movement of the prices follows certain
proportions, i.e., d = 1/u) or in other words, Sud = Sdu = S, the procedure is very
similar to nonrecombining tree except the fact that there are now shared values. When
dealing with multistep binary trees, the techniques are exactly the same.

4.3 Parallel single asset algorithm

Let P be the number of processors. In the recursive algorithm, we delegate proces-
sor 0 as the master processor. We start at the first processor at the first level (level 0)
which corresponds to time t = 0. We build a nonrecombining tree until the number
of leaf nodes equals the number of available processors. Each leaf node is assigned
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to a distinct processor (one of them could be a master processor itself). Then each
processor starts building its own tree. All processors are working independently on
their subtrees without any information interchange. As soon as a processor creates a
tree with a certain depth (= L − log2 P), it starts working backward and computes
option price in every node. Each processor generates the tree and computes the option
prices recursively. At the end of the computation, each processor sends its final value
to the master processor. The master processor upon receiving the values correspond-
ing to all leaf nodes from the individual processors, proceeds computing the option
values recursively until the initial node at t = 0.

The recursive algorithm utilizes a nonrecombining binomial lattice, meaning that
we do not impose the condition that Sud = Sd = S. The sheer number of nodes cre-
ated in a nonrecombining lattice (2L) restricts the usefulness of the recursive algo-
rithm to short dated options. When L is large (to accurately price options with long
times to expiration (large T )), the nonrecombining lattice algorithm is inefficient.
We, therefore, create a recombining tree to reduce the number of nodes by utilizing
Sud = Sdu = S. The recombining algorithm is explained next. This algorithm starts
from level L.

The number of levels in the tree and the number of processors are assumed to
be power of two. The number of leaf nodes is always equal to the number of levels
plus one (L + 1). All leaf nodes are evenly distributed among the processors but the
last processor receives an additional node Initially, the option prices at the leaf nodes
are calculated by finding the difference between a possible stock price and strike
(exercise) price, (Si − K), which is the same as the local pay-off at these nodes.
Every processor i, except the processor 0, send the value of its boundary node to
processor (i − 1). (Higher numbered processor sends data to the lower numbered
neighbors.) In a given processor, for every pair of adjacent nodes at a certain level Li ,
the processor computes option price for pair’s parent node, which is at level Li−1.
The computation proceeds to the previous level Li−1 and option price computation
is repeated with additional exchange of boundary node. Eventually, the processor 0
computes the option price at the level L = 0.

At each time step t , both algorithms operate in two modes simultaneously: com-
munication and computation. In the communication mode, “adjacent” processors
exchange data on option values. Processor 0 only receives data from processor 1.
Processors 1 through (P − 1) receive data from the processor’s higher numbered
neighbor and send data to their lower-numbered neighbor. P only sends data to
processor (P − 1).

By forcing the lattice to recombine (imposing the condition that Sud = Sdu = S),
we eliminated the step of constructing the lattice. The stock prices are instead cal-
culated “on-the-fly” with proper indexing scheme. Computation at each node thus
involves calculating the stock price and the option value. We calculate the asset price
based on the number of up and down movements from the initial node. This calcula-
tion only requires the node and time indices. For example, the stock price at node j

and time Li is calculated as S
Li

j = S0 ∗ uLi−2∗(Li−j).

Theoretical analysis of the recombining algorithm Here, we explain the total num-
ber of computations and communications of our algorithms. To make the explanation
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Fig. 4 Example with 8 levels and 4 processors with computational complexity

easier we use an example binomial tree with 8 levels and 4 processors (Fig. 4) and
generalize the complexity analysis for L levels and P processors.

Total computations We are interested in counting the total number of computations
performed by each processor excluding the leaf nodes. In the example, let us consider
the processor P3. The longest path from any of the three leaf nodes in P3 ends at
level 6.

The number of nodes allocated to this processor initially is L/P + 1 (= 3).
Each of these nodes has parent nodes at level 7. One of the two nodes at level 7 is
boundary nodes. Note that in our algorithm, the communication is from higher num-
bered processors to lower numbered neighboring processor. Therefore, the bound-
ary node is created in P3. Similarly, these two nodes at level 7 have parent node
at level 6, which is also a boundary node local to the processor. Note that all the
nodes we have just discussed form a triangle starting at level 6. These are the
nodes computed by processor P3 locally. The number of computations, therefore,
is 1 + 2 + 3 + · · · + L/P = (L/P ) + (L/P + 1)/2.

Let’s now consider P2. The longest path from leaf nodes of this processor ends
at level 4. We use the technique of triangles discussed above to calculate the total
number of computation performed by processor P2.

We superimpose all the local nodes of processor P3 (represented as a triangle)
to cover some of the processor P2 nodes (that is, the first node (counting from the
bottom) at the level 6 can be superimposed on to the third node at the same level, the
third node at the same level). This way, we can cover most of the processor P2 except
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for the square (actually a rhombus) at the bottom (consisting of first node at level 4,
first and second nodes at level 5, and second node at level 6). The number of nodes
on each side of this square is equal to L/P and hence, the total number of nodes in
this square is (L/P )2. Therefore, processor P2 has L/P + (L/P + 1)/2 + (L/P )2

total nodes for computations. Therefore, the number of total computations for Pi ,
i = 0, . . . ,P − 1 is (L/P ) × (L/P + 1)/2 + (P − i − 1)(L/P )2.

Communication Recall that at each level, the higher numbered processor sends a
data value to the neighboring lower numbered processor. Therefore, P0 performs no
remote communications. Processor P3 sends (L/P + 1) data values to processor P2
and processor P2 in turn sends (L/P + 1) + L/P data values to processor P1, etc. In
general, processor Pi communicates 1 + ((L/P ) × (P − i)) data values to Pi−1.

Therefore, total number of communication is

P−1∑
i

{
(1 + L)/P × (P − i)

} = (P − 1)(1 + L/P )

Nonrecombining algorithm In this algorithm, the master processor creates P leaves
(for each asset in the case of the multi-asset derivative) and stores them in an array and
distributes this array to distinct processors. The processors create their own subtree
with the leaf nodes (of the master processor) as the root and perform the computa-
tions. At the end of the local computations, the processors send back the computed
option values to the master processor in an array (for each of the each of asset tree in
the case of the multi-asset derivative). Therefore, there are P sends and P receives
by the master processor totaling 2P communications. The number of levels created
by the master processor is log2 P . Therefore, to reach initially set number of levels L,
each processor creates a subtree with L − log2 P levels. The number of computation
per processor is 2(L−log2 P+1) − 1. Therefore, the total number of computation in the
algorithm is 2(L+1) − 1.

4.4 Parallel multi-dimensional asset algorithm

The algorithms described above are for options with single underlying asset. As men-
tioned earlier, parallel algorithms are in great demand for financial problems, espe-
cially for long-dated options with many underlying assets. Financial derivatives with
ten underlying assets are very common in the market place. We, therefore, extend the
above algorithms for multi-dimensional derivatives, which have multiple assets as
underlying components. This problem gives rise to immense effort in analyzing the
effect of one of the underlying assets onto the other and the overall effect on the deriv-
ative itself. This leads to multi-dimensional analysis and in the simplest unoptimized
form would require ten times more computing time.

As time periods and number of assets increase, the interactions among these assets
would modify the computational pattern and this would further increase the compu-
tational complexity for such problems. The problem becomes computationally in-
tractable due to many real-world constraints to be satisfied in pricing such deriva-
tives. One of the other effects is on managing the portfolio [39], for which pricing of
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Fig. 5 Options with many underling assets

these derivatives form a fundamental problem that need to be solved accurately and
expediently.

In our algorithm, the number of assets is fixed for a given experiment with an im-
portant assumption that they all have the same expiration time. This helps us to keep
the computation time step constant for all the assets once we fix the number periods L

into which the total period [0, T ] is divided into. This results in having a same tree
structure for all the assets (Fig. 5). To handle the multi-assets, we introduced an array
representing the option values of each of the assets. We modified the broadcasting
function to enable array distribution among the processors. Each processor receives
a portion of the tree.

Both algorithms have a number of variables. Type double is used for real values
to ensure high accuracy of calculations. Since tree size may vary greatly, dynamic
memory allocation is required. Using the input parameters read from a file, the other
parameters are computed. A single processor does these readings and computations.
Broadcasting is used to pass the read and calculated parameters to all processors.
There are several different ways to broadcast data in MPI. One of them is the pack-
ing of all the data into a single variable and then broadcasting it to the processors.
After receiving this variable, the processors unpack it into various parameters. We
have found that this way is more efficient than the individual broadcasting of each
parameter.

For example, the processor 0 works with the first n-nodes of the first asset
tree, first n-nodes of the second asset tree, etc. The processors go simultaneously
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through the same portion of the each asset tree. In essence, we have kept the num-
ber of Send/Receive calls with multi-asset problem to be the same as the number
of Send/Receive calls with single asset problem by folding the option values of the
different assets into an array.

5 Developing mobile interface

There are five major platforms available for developing mobile applications such
as BREW, Windows Mobile, Symbian, WAP (Wireless Application Protocol), and
J2ME (Java 2 Micro Edition) [28]. For our research, we developed the architecture
on a J2ME platform. J2ME is supported by major carriers (for example Nokia, Mo-
torola) and it is relatively easy to deploy the application for a trader to download
and install on mobile devices. We describe in this section J2ME and its implemen-
tation details of the current study. J2ME is a stripped down version of Java aimed at
machines with limited hardware resources such as a PDA or a mobile phone [30].
The J2ME platform has two configurations: CDC (Connected Device Configuration)
and CLDC (Connected Limited Device Configuration). The choice of configuration
will depend on the memory constraints of the particular device. CLDC targets for
devices with a constrained CPU and memory, which is generally a 32-bit CPU with
160 KB–512 KB memory. CLDC uses the Kilo Virtual Machine (KVM), a special-
ized virtual machine that supports only a limited memory. CDC is targeted for devices
with more resources, usually a 32-bit CPU with more than 2 MB of memory. A CDC
configuration layer runs on top of the C Virtual Machine (CVM). On top of these
configurations, other profiles such as MIDP (Mobile Information Device Profile) and
optional APIs can be layered in order to support user interface and other network
functionalities.

In the following paragraphs, we provide details about three important design is-
sues for J2ME that are essential for our study: (i) designing and building a MIDP User
Interface (UI) (ii) communication of the MIDP and back end server and (iii) security
issues of the network. MIDlet is a MIDP application [32]. Similar to applet, a MIDlet
is a managed application. A web browser manages applets, whereas, the Application-
Management System (AMS) manages MIDlet. Every MIDlet class handles its own
logic and life cycle, which reflects the methods of the MIDlet class. There are three
possible methods in a MIDlet’s life-cycle such as startApp(), pauseApp() and destroy-
App(). MIDlet enters the active state after the application manager calls startApp();
MIDlet remains in the active state until the application manager calls pauseApp() or
destroyApp(). In the pause-App() method, MIDlet is temporarily suspended whereas
in destroyApp(), the MIDlet completely terminates the application itself and awaits
garbage 15 collection. In MIDP, UI classes are located in the javax.microedition.lcdui
package of J2ME. In J2ME, commands are used to create UI objects that behave like
buttons (action events in Java); commands such as OK, EXIT, and HELP are charac-
terized by instances of command class.

Option pricing is computationally intensive. Since the required processing power
and the memory are both in short supply on mobile devices, computation of option
for particular asset is done on the server-end by utilizing the total functionality of
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Java 2 Standard Edition (J2SE). Moreover, in order to optimize the consumption of
resources on mobile devices, it is desirable to keep the communication to a minimum.
Therefore, the connection between the server and the device is kept open just long
enough to exchange user data (for example, name of the computational technique to
be used to compute the option value together with the required accuracy).

The connection to dissimilar types of wireless devices will need different forms of
connection interfaces. The Generic Connection Framework (GCF) [30] is available
in J2ME/CLDC to reflect the need for small-footprint networking for a range of mo-
bile devices. GCF is a hierarchy of interfaces defined in the “javax.microedition.io”
package that allows mobile applications readily available to the trader on the network.
The GCF interfaces reflect different capabilities and ensure the operations in a logical
fashion. MIDP simplifies this GCF to a single connection type called HTTP (Hyper
Text Transfer Protocol) and HTTPS (secure HTTP available in MIDP 2). HTTP is
built around client requests and server responses, and it has two parts: header and
content. The communication format (for example, XML, text, and binary) between
MIDlets and the back end server in the body of HTTP depends on the design of the
application. We tried with GET, HEAD, and POST methods, which are simple to
implement and then with XML-RPC and KXML-RPC2 over HTTP/HTTPS. In our
random observations of speed and bandwidth tests, XML tends to have heavy band-
width between the mobile and the server rather than byte arrays (either it is a string
or data of any sort).

In order to provide enough security for data transmission, we will use secure HTTP
(HTTPS) provided by MIDP 2.0 (If device support MIDP 2.0, it has default HTTPS;
for example, Motorola E390 supports MIDP 2.0). On top of that, to provide additional
security, we use open source lightweight API called the “Bouncy Castle” library that
supports a large number of cryptography algorithms [32]. Therefore, the mobile com-
ponent of our architecture will be secured. Finally, the task of deployment of the
above application (MIDlet Suites) to a specific mobile device can be done using OTA
(Over-The-Air installation of MIDlets) or Infrared (IR) or Bluetooth technology.

Before illustration of our server design, we will describe the design layout of our
architecture with aid of diagrammatic representation.

6 Ubiquitous architecture for option pricing

In this architecture (Fig. 6), a broker remits a strike price and a contract period of a
particular option (with a specific asset) to a subscribed Mobile/PDA/wireless trader.
The information provided by the broker is incomplete and can only partially aid in
computing the fair value of the option. If the trader (client) needs to decide if enter-
ing the option contract is beneficial, the trader has to compute the option value by
selecting the underlying assets and computational technique to be used for computa-
tion at the back end server. Moreover, the trader enters the number of time steps to be
processed for computing the option price. All the above values entered by the trader
are sent to the web/compute server for computation.

2XML-RPC is a standard way of implementing remote procedure calls (RPC) using XML and HTTP. To
accomplish this, it uses XML to mark up all of the method and uses HTTP to transfer the methods.
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Fig. 6 Mobile infrastructure

Server and its Functional Operations: Once the client submits time steps, underly-
ing asset and the computational technique, back end servlet mines (using table mining
technique) real-time values such as spot price, volatility, and prime interest rate from
the web sources. The server then computes option price with the above real-time val-
ues, using finite-differencing technique described in Sect. 4, or other computational
techniques such as binomial tree or Monte Carlo method.

Theft and misappropriation are greatest vulnerable factors in wireless trading. Mo-
bile devices can be easily stolen and misused which may result a financial debacle.
Consequently, access control and identification of authentic trader are undoubtedly
vital in wireless trading. In our framework, transmission mode between client and
server are secured in every aspect (as mentioned in Sect. 5). In addition, in order to
access his/her portfolio, a trader has to setup and will able to access their accounts
that will facilitate customized tables and data analysis based on the underlying com-
putation (for example, to access tables such as risk-free zone, healthy bids, and fa-
vored stocks which are discussed in results section). Trader’s devices are enabled by
security token and each token generates a 5-digit security code that is periodically
changed, updated, and acknowledged by the trader to the server or vice versa.
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7 Architecture results

In this section, we report our experimental results of the architecture. We have di-
vided our results into two parts: (A) computational results (B) mobile-enabled option
trading scenario.

Computational results In Fig. 7, we present one set of results on the computed
call option values. We notice that as the strike price increases the call option value
decreases, as expected. Validations of these results are done by simple manual cal-
culation of a smaller binomial tree with identical parametric conditions. Moreover,
for the current study, accuracy on option value computed is to the fourth decimal
place. This accuracy is sufficient for an academic exercise. However, we can obtain
more accurate results, which will incur higher computational cost. Implementing the
computational techniques in a parallel environment [24] will circumvent the compu-
tational cost. This is not the objective of the current study, however.

Intel corp (INTC) CALL option We calculated option values for INTC CALL on-
line with varying strike prices (for both actual and speculated values) and stock prices.
Table 1 presents the option values computed at various stock and strike prices. The
real time data for S is 25.52. To make some speculation, we have computed the option
values for stock, strike prices around the currently available stock, and strike prices.

Fig. 7 Option values at various
stock and strike prices

Table 1 INTC (CALL) option values for varying stock and strike prices

S = 26.24 S = 25.88 S = 25.52 S = 25.16 S = 25.8 S = 24.54

K = 15 11.77553 11.44067 11.1058 10.77094 10.43608 10.19423

K = 17.50 9.670142 9.345136 9.0259 8.706682 8.387466 8.156904

K = 20 7.720975 7.401749 7.0826 6.763296 6.44406 6.213517

K = 22.50 5.945113 5.67445 5.40381 5.133154 4.362501 4.667031

K = 25 4.413729 4.143077 3.87243 3.601772 3.383281 3.255619

K = 27.50 3.21096 3.034197 2.85743 2.680671 2.503908 2.376246

K = 30 2.33158 2.154825 1.979806 1.801299 1.624536 1.502361

K = 32.50 1.544512 1.457355 1.371199 1.284542 1.197885 1.134185
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Table 2 Healthy bids for option contract (INTC) when stock is 25.52

Strike price ASK-price Option price Error-R% Healthy BID

15 11.4 11.1058 2.50% 11.25.29

17.5 9.7 9.0259 6.94% 9.3559

20 7.9 7.0826 10.34% 7.4913

22.5 6.2 5.40381 12.84% 5.8125

25 4.8 3.87243 19.00% 4.33613

27.5 3.6 2.85743 20% 3.05099

30 2.6 1.979806 NA NA

32.5 1.85 1.3711989 NA NA

This is done to come up with a healthy bid to enter the option contract as presented
in Table 2.

Risk-free zone To be in the risk-free zone, we have set up a healthy bids based
on the ASK price and error rate of on-line contracts with stock price 25.52. Ask
price can be defined as the price at which a writer is willing to sell (buy) an asset;
also called the offer price. We propose a four-step procedure for calculating “healthy
bids” of the option contract. (1) Ask price is mined from on-line web sources (for
example Yahoo!) and option price is calculated (as mentioned in Sect. 3) based on
real time values. Once we have option price of the contract and on-line ASK value,
we can calculate percentage error, mean error, and finally healthy bid. (2) Calculating
percentage error: Percentage Error rate can be calculated as: (ASK price − Option
price)/ASK price × 100.

For our research, we consider errors within the range of (0–10%). If the error rate
is more than the specified range, it is discarded. For practical purposes, the real-time
error could be improved with advanced computational techniques mentioned earlier.
If error is within the specified range, we can continue with the calculation of the
healthy bid. (3) Mean error: Healthy bid can be calculated based on the mean error
rate and is calculated by the formula: abs((ASK price + Option price)/2 − ASK
price).

(4) If (ASK price − Option price) < 0: Healthy bid = Ask − mean error and
if (ASK price − Option price) > 0: Healthy bid = Option price + mean error. As
seen in Table 1, the trader will be provided with various tables with speculated stock
values to provide various scenarios of option values and a healthy bid. These tables
are made available to the trader (client) from the web/compute server. Depending on
the current knowledge of the trader on the behavior of the underlying asset, the trader
will be able to select one of the healthy bids (please see Table 2—an example for
Intel call option) and instruct the broker to enter the option contract at that bid. If the
writer finds this bid comfortable, he/she will agree to this price and will agree to sell
the underlying asset at the agreed upon strike price at the maturity date. In essence,
the investor (client), therefore, has used his/her mobile device ubiquitous to value an
option and enter the contract with a level of comfort that the investor can expect a
profit from the option contract.
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Table 3 Yield point of various companies’ CALL contracts

Symbol Strike price Stock price Historic volatility Option value Gi

MSFT 25.5 25.48 15.56% 3.137521933 4.50%

YHOO 30 37.41 24.19% 10.7066896 16.44%

MNT 45 41.53 27.78% 5.786570944 11.54%

SUN 105 108.68 25.94% 20.24165532 NA

GOOG 230 284.84 31.95% 1.121790707 0.60%

Table 4 Yield point of various companies’ PUT contracts

Symbol Strike price Stock price Historic volatility Option value Gi

MSFT 30 25.48 15.56% 4.52 6.55%

YHOO 35 37.41 24.19% 2.154014463 3.36%

MNT 45 41.53 27.78% 6.074323101 1.12%

SUN 105 108.68 25.94% 8.398909621 NA

GOOG 280 284.84 31.95% 31.6684338 17.49%

Favored stock To find out the preferred stock among various sectors, we have in-
troduced Gi factor, which is based on yield point. Gi is calculated using a formula
(Tables 3 and 4 for calls and puts on various stocks): Gi = (ci × 100)/(Si − MeanS)

where ci is the option price; Si strike price; Max(Gi) is the favored stock.

7.1 Mobile-enabled option trading scenario

Mobile emulation is done on Net Beans, which is open source software with integra-
tion of J2ME Wireless Toolkit platform. Moreover, UEI (Unified Emulator Interface)
compatible emulators allow us choosing different devices (for example, NOKIA and
MOTOROLA) from various companies [31]. The following Mobile screens (1–5)
describe the flow design and the trading scenario. This architecture enables pric-
ing multiple stock options with various strike prices in ubiquitous fashion. The con-
tract/pricing information of particular stock is updated continuously to the trader on
the move by aid of floor-services (exchanges) or brokers in time-to-time fashion.
Once the clients get the option price from the web server, he/she will utilize built-in
wireless device’s small computing power to calculate healthy bids for various stocks
in different sectors and simultaneously choose favored stock among them.

8 Conclusions

Fundamental challenges to design an ubiquitous software architecture for an option
trader that is addressed in this paper emanate from three different domains: option
trading, web mining, and mobile computing. Every domain has its own challenges
for its functionality. We list the challenges that we faced to build the architecture and
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Screen 1 Flow design of
mobile terminal and server
response

Screens 2 and 3 Alerts from
the trading floor-services or
brokers; and active stocks on the
trading floor

Screen 4 Details of the
contract and computational
techniques available for pricing

Screens 5 and 6 Response of the computed results from the web server (back end servlet)
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our solution to each of the respective challenges, and thereby our contribution to the
emerging mobiquitous business scenario:

Computation issues (i) option pricing by itself is a computationally intensive prob-
lem; (ii) parameters required for computing option price are continuously changing
due to market fluctuations. In such a situation, accurate results will depend heavily on
appropriate use of current market conditions; (iii) configuring and implementing the
existing/new computational algorithms and handling multiple traders simultaneously
and remotely is a challenging task.

Contribution We have parallelized and implemented couple of computational tech-
niques (binomial tree method and finite-differencing technique) maintaining accuracy
to a large extent. Higher accuracy can be obtained by introducing appropriate new
technique (when and if available or developed) in this module of our architecture.

Challenges in web mining Mining real-time finance data from reliable web sources
and forwarding the observed results.

Contribution Heuristics for single dimensional and two-dimensional tables are em-
ployed that are simple yet significant, however, not described in the current version
due to lack of space.

Challenges in mobile computing (i) designing and building mobile trading terminal
for computing option price any time and any where is one of the main challenging
components of the current research; (ii) as the architecture depends heavily on real
time data access, network connectivity, and security between mobile client and back
end server remain an important issue.

Contribution To handle these issues, we have employed iterative secured-flow-
design-approach for building screen logic and layout design of the Mobile interfaces.
In addition, to provide additional security to wireless devices, we employed light-
weight API called “Bouncy Castle.”

The essence of this framework is in its novelty, which stems from three different
domains to enable mobile trader to compute the price of an option in pervasive fash-
ion, which is an important application in option trading. Hence, this is one of the first
studies that facilitate the service of option pricing on-the-go. For future work, we will
introduce option sensitivities such as delta, gamma, vega, and others that are widely
used by active traders to compute the exposure of portfolios that contain options.
Each of these Greek measures show how the portfolios respond to a change in some
variables (maturity period, volatility, strike price, etc.). Conclusively, our architecture
enables an active investor to price options in real-time using various computational
techniques in mobiquitous fashion that would pave way for effective investment trad-
ing toward higher profitability.
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